
I,41-43 SR,44 TeR,46 PR2,
6'39-46 AsR2

6-8'47), which for the 
bromine-bridged derivative was characterized both by 
X-ray diffraction48 and by detailed infrared spectral 
studies43 to possess D211 symmetry. 

(42) J. C. Hileman, D. K. Huggins, and H. D. Kaesz, J. Am. Chem. 
Soc, 83, 2953 (1961); Inorg. Chem., 1, 933 (1962). 

(43) M. A. El-Sayed and H. D. Kaesz, ibid., 2, 158 (1963). 
(44) W. Hieber and W. Schropp, Jr., Z. Naturforsch., 14b, 460 

(1959); P. M. Treichel, J. H. Morris, and F. G. A. Stone, J. Chem. Soc, 
720 (1963). 

(45) W. Hieber and T. Kruck, Chem. Ber., 95, 2027 (1962). 
(46) W. Hieber and W. Freyer, ibid., 92, 1765 (1959). 
(47) R. F. Lambert, Chem. Ind. (London), 830(1961). 

The structure ofIr02Cl(COXP(C6Hb)z)2, which is the oxy­
gen adduct of the synthetic molecular oxygen carrier 
IrCl(CO)(P(CtH^)2, has been determined from three-
dimensional X-ray data collected from a single crystal. 
The material crystallizes in space group Cf-Pl of the 
triclinic system with two molecules in a cell of dimensions 
a = 19.02, b = 9.83, c = 9.93 A.; a = 94.0, j3 = 64.9, 
y = 93.2°; V = 1676 A.3. The crystal structure con­
sists of the packing of discrete, monomeric molecules. 
The molecular structure surmised by Vaskafrom spectro­
scopic data has been confirmed, and, in addition, details of 
the attachment of molecular oxygen to iridium have been 
obtained. The iridium may be described as either five-
or six-coordinated: the iridium, the two oxygen atoms, 
the carbonyl group, and the chlorine atom lie in the basal 
plane, with phosphorus atoms above and below this 
plane. The two oxygen atoms are equidistant from the 
iridium atom, with an average Ir-O distance of 2.07 A. 
The 0-0 bond length of 1.30 ± 0.03 A. is intermediate 
between those characteristic of O2 (1.21 A.) and O2

-2 

(1.49 A.) and corresponds closely to Of (1.28 A.). 

Introduction 

Knowledge of the manner in which oxygen is attached 
in natural molecular oxygen carriers, such as hemo­
globin and hemocyanin, is obviously of great importance 
to our understanding of the molecular bases for such 
properties as reversibility of oxygen uptake and oxygen 
transport. No direct information on the mode of 
attachment is available at present, and the prospects for 
a direct determination by diffraction methods, though 
not altogether bleak, are at least not immediate. On 
the basis of indirect spectroscopic and magnetic meas­
urements, several models for the mode of attachment 
of molecular oxygen to the iron in hemoglobin have 
been put forward.2-6 These run the gamut from a 

(1) Research performed under the auspices of the U. S. Atomic 
Energy Commission. 

It is hoped that a neutron diffraction study of this 
compound can be undertaken in the near future in 
order to verify our proposed configuration. 
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(48) L. F. Dahl and C. H. Wei, Acta Cryst., 16, 611 (1963). 

linear bonding arrangement2 through a bent configura­
tion84 to the triangular, or 7r-bonding, arrangement6 

in which both oxygens are equidistant from the iron. 
There has also been recent speculation and discussion 
concerning the disposition of the electrons in the bond­
ing scheme.4'6-8 

The synthetic molecular oxygen carriers offer ad­
vantages over the natural ones in simplicity and variety. 
It is evident that by studying the physical and structural 
properties of synthetic carriers and their oxygen adducts 
one should be able to increase the understanding of the 
molecular bases for such phenomena as reversibility. 
Yet very few studies of a definitive nature have been car­
ried out on these synthetic carriers or their oxygen ad­
ducts, probably because most of them are unstable 
or poorly characterized.9 Vaska's discovery10 of the 
1:1 reversible molecular oxygen carrier IrCl(CO)-
(P(C6H5)3)2 is thus of great importance, for the oxygen 
adduct IrO2Cl(CO)(P(C6H6)S)2 may be crystallized and 
is extremely stable and well characterized in comparison 
with previously known oxygen adducts. In a prelimi­
nary report11 we gave some details of our study of the 
molecular structure of this remarkable compound. In 
this paper we present our results in full. 

Collection and Reduction of the X-Ray Data 

Excellent light orange crystals of IrO2Cl(CO)(P-
(C6H5)3)2 were very kindly supplied by L. Vaska. These 
crystals were stable in air during the X-ray photography, 

(2) L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. U. S., 22, 
210(1936). 

(3) L. Pauling, "Hemoglobin, Sir Joseph Barcroft Memorial Sym­
posium," Butterworth and Co. (Publishers) Ltd., London, 1949, p. 57. 

(4) L. Pauling, Nature, 203, 182(1964). 
(5) J. S. Griffith, Proc. Roy. Soc. (London), A235, 23 (1956). 
(6) J. J. Weiss, Nature, 202, 83 (1964). 
(7) J. J. Weiss, ibid., 203, 183 (1964). 
(8) R. O. Viale, G. M. Maggiora, and L. L. Ingraham, ibid., 203, 183 

(1964). 
(9) See L. H. Vogt, H. M. Faigenbaum, and S. E. Wiberley, Chem. 

Rev., 63, 269 (1963), for a review of synthetic carriers. 
(10) L. Vaska, Science, 140, 809 (1963). 
(11) J. A. Ibers and S. J. La Placa, ibid., 145, 920 (1964). 
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and although they did darken gradually, no detectable 
changes in X-ray intensities resulted. The crystals 
were assigned to the triclinic system as a result of an 
optical examination and preliminary X-ray photogra­
phy. A Delaunay reduction failed to suggest the 
presence of hidden symmetry. The cell chosen is a 
primitive one of dimensions a = 19.02 ± 0.03, b = 
9.83 ± 0.02, c = 9.93 ± 0.02 A., a = 94.0 ± 0.1, 
/3 = 64.9 ± 0.1, 7 = 93.2 ± 0.1°. The unit cell 
volume is 1676 A.3 and the calculated density is 1.61 
g./cm.3 for two molecules in this cell. A very sensitive 
test for a piezoelectric effect was kindly performed for 
us by F. Holtzberg; no effect was found. Accordingly 
the space group Q2-Pl was assumed in this work, and 
this assumption seems justified in view of the excellent 
agreement obtained between observed and calculated 
structure amplitudes. Since there are two molecules in 
Pl, no crystallographic symmetry conditions need be 
imposed on the molecules. 

Integrated intensity data were collected at room 
temperature by the equi-inclination Weissenberg tech­
nique. Zirconium-filtered Mo Ka radiation was em­
ployed. The layers hOl through /26/ were photographed. 
The intensities of 1128 independent reflections within the 
limiting sphere 0Mo < 18° w e r e estimated visually. 
(About 60 % of the accessible reflections were sufficiently 
strong to be estimated reliably.) The usual Lorentz 
polarization factor was applied to these intensities to yield 
F0

2 values (where F0 is the observed structure amplitude), 
and these were then corrected for absorption. In order 
to carry out the absorption correction, the eight faces on 
the crystal used in the X-ray photography were identified 
by optical goniometry and their dimensions were care­
fully determined. The volume of the crystal used is ap­
proximately 0.0021 mm.3 and has a calculated weight 
of only 3.2 jug. Yet because the crystal is not of equant 
habit, but has linear dimensions of approximately 
0.31 X 0.09 X 0.08 mm., the absorption corrections 
are important. Using a linear absorption coefficient 
of 44.3 cm. -1, we find the transmission coefficients vary 
from 0.50 to 0.75.12 The F0 values were subsequently 
brought to an approximate common scale through a 
modification of Wilson's procedure. 

Solution and Refinement of the Structure 

The positions of the Ir and P atoms were evident from 
inspection of the three-dimensional Patterson function. 
The positions of the two oxygen atoms and of the ring 
carbon atoms were easily found in a subsequent dif­
ference Fourier synthesis, based on structure factors 
phased by the Ir and P contributions. The two most 
prominent peaks on this map corresponded to reason­
able positions for the Cl and CO, but they were similar 
in shape and height and in neither were the C and O 
of the CO group resolved. A disordered arrangement 
of CO and Cl was suspected and was confirmed in later 
calculations. 

The structure was refined by the least-squares method. 
The function minimized was Zw(F0 — Fc)

2, where the 
weights w were assigned in the following way: / 
(the raw intensity) < 16, w = (//32F)2; / > 16, w = 
(2F)~2. The atomic scattering factors for the neutral 

(12) In addition to a variety of local programs for the IBM 7090, the 
following were employed in the calculations: local modifications of 
Burnham's GNABS absorption program, Zalkin's FORDAP Fourier 
program, and the Busing-Levy ORFLS least-squares program. 

atoms tabulated by Ibers13 were used. The anomalous 
parts of the Ir, Cl, and P scattering factors were ob­
tained from Templeton's tabulation14 and were in­
cluded in the calculated structure factors.15 

The refinement was carried out using the group pro­
cedure discussed more fully elsewhere.1617 In this 
manner the phenyl rings were constrained to their well-
known geometry (D6h symmetry, C-C = 1.392 A., 
C-H = 1.08 A.) with consequent increase in con­
vergence rate and decrease in the number of parameters 
and in computing time. This procedure permits the 
introduction of physically reasonable information, 
namely the phenyl ring geometry, into the refinement 
and this is particularly important since this geometry is 
known more accurately than it could be deduced from a 
structure determination of this sort. The variable 
parameters for each phenyl ring are a single, isotropic 
thermal parameter and six positional parameters. 
These are the fractional coordinates of the ring center, 
xc, yc, and zc, and three angles, 5, e, and 77, which are 
successive counterclockwise rotations about the a2', 
a / , and a3 ' orthogonal internal axes that bring about 
alignment, except for translation, of this coordinate 
system with an orthogonal, external coordinate system 
A. The origin of the internal coordinate system is 
taken at the ring center, and a3 ' is normal to the plane of 
the ring while a / intersects a vertex. The orthogonal, 
external coordinate system A is formed from the tri­
clinic coordinate system a in the following way: A2 

is parallel to a2; Ai is parallel to a2 X a3; A3 is parallel 
to A1 X A2. 

In the initial refinement, Cl scattering factors were 
assigned to each of the Cl-CO peaks, and each of the 
heavy atoms was assigned a single, variable isotropic 
thermal parameter. This refinement of 70 individual 
and group positional and thermal parameters con­
verged rapidly to a conventional R factor (R = 2||F0| — 
|Fc|j/2|F0;|) of 0.085 and to a weighted R factor R' 
(R' = (Sw(F0 - Fc)

2/SwF0
2),/!) of 0.100. A dif­

ference Fourier synthesis based on this refinement 
provided no indication of an incorrect treatment of the 
Cl-CO peaks, but did suggest that the Ir atom is 
vibrating anisotropically. 

In a final round of calculations the Ir was assigned 
anisotropic thermal parameters, the Cl-CO positions 
were again approximated by a Cl scattering factor, and 
this time the hydrogen atom contributions on the phenyl 
rings were included in the calculations. This refine­
ment of 75 positional and thermal parameters con­
verged to values of R of 0.071 and of R' of 0.074 and 
led to the final parameter values given in Table I. 
The standard deviations of these parameters, as esti­
mated from the inverse matrix, are also listed in Table 
I. (Table II lists the fractional coordinates for the ring 
carbon atoms that can be derived from the data of 
Table I.) A final difference Fourier based on this 
refinement had density no higher than 0.9 electron/A.3, 
about 30% of the height of a phenyl carbon atom in this 
structure. The only obvious feature on this difference 
Fourier relates to the vibration of the phenyl rings: 

(13) J. A. Ibers in "International Tables for X-Ray Crystallography," 
Vol. 3, Kynoch Press, Birmingham, England, 1962, Table 3.3.1. 

(14) D. H. Templeton, ref. 13, Table 3.3.2C. 
(15) J. A. Ibers and W. C. Hamilton, Acta Cryst., 17, 781 (1964). 
(16) S. J. La Placa and J. A. Ibers, / . Am. Ckem. Soc, 85, 3501 

(1963). 
(17) S. J. La Placa and J. A. Ibers, Acta Cryst., 18, 511 (1965). 

2582 Journal of the American Chemical Society / 87:12 / June 20, 1965 



Table I. Positional, Thermal, and Group Parameters for IrO2Cl(CO)(P(C6H6)S)2 

Atom 

Ir 
Pi 
P2 
Xi= 
X2 

Oi 
O2 

Group 

PiR,' 
PiR2 

P1R3 

P2Ri 
P2R2 

P2R3 

X 

0.2342(1)« 
0.1335(6) 
0.3430(7) 
0.2873(9) 
0.1467(10) 
0.224(1) 
0.279(2) 

Xc* 

-0.033(1) 
0.098(1) 
0.181(1) 
0.375(1) 
0.496(1) 
0.330(1) 

Jc 

0.313(2) 
0.203(2) 
0.635(2) 
0.279(2) 
0.152(2) 

-0.192(2) 

y 

0.2100(2) 
0.3207(13) 
0.1266(15) 
0.1153(18) 
0.0293(21) 
0.366(3) 
0.397(3) 

2c 

0.195(2) 
0.528(2) 
0.250(1) 

-0.494(2) 
-0.146(2) 
-0.281(2) 

S 

4.97(4) 
3.04(2) 
1.21(2) 
4.86(2) 
0.30(2) 
5.34(5) 

Z 

0.0068(2) 
0.2136(11) 

-0.2024(13) 
0.1618(16) 
0.0019(19) 

-0.117(2) 
-0.073(3) 

t 

5.22(2) 
5.81(2) 
5.86(1) 
0.29(2) 
0.33(2) 
5.10(2) 

B 

3 
6 

11 
13 

A.2 

b 
9(3) 
0(4) 
0(4) 
6(5) 

4.9(7) 
8.4(1.0) 

V 

4.97(4) 
1.69(2) 
2.91(2) 
5.20(2) 
2.46(2) 
3.85(5) 

S 1 A . 8 

5.6(6) 
5.2(5) 
5.2(5) 
6.3(5) 
7.2(6) 
6.3(5) 

° Numbers in parentheses here and in succeeding tables are estimated standard deviations in the least significant digits. ° Ir was re­
fined anisotropically. The thermal ellipsoid had the form exp( — 8uh2 + Bwk2 + Q33I

1 + 2Bnhk + 2SnM + 2ft3W) and the values ob­
tained are /3„ = 0.00205(6); /322 = 0.0088(2); ft3 = 0.0085(2); ft2 = 0.00082(9); ft, = -0.0025(1); ft, = 0.0020(2). ' X, and X2 refer 
to disordered Cl-CO positions. d xc, yc, and zc are the fractional coordinates of the ring centers. The angles 5, e, y (in radians) are de­
fined in the text. " PiRi is phosphorus 1, ring 1, etc. 

Table II. Derived Parameters for Group Carbon Atoms 

Group 
atom" x y i 

PiRiC, 
P1RiC2 

PiRiQ 
P1R1C4 
PiR1C6 

PiRiC6 

P1R2Cj 

P1R2C2 
P1R2C3 
P1R2C4 
P1R2C5 
P1R2C6 

PiR3C1 

P1R3C2 
P1R3C3 
P1R3C4 
PiR3C5 
P1R3C6 

P2R1C1 
P2R1C2 
P2R1C3 
P2R1C4 
P2R1C5 
P2R1C6 

P2R2C1 
P2R2C2 
P2R2C3 
P2R2C4 
P2R2C6 
P2R2C6 

P2R3C1 
P2R3C2 
P2R3C3 
P2R3C4 
PgRsC5 
P2R3C6 

° Ci is attached to P; other C atoms are numbered in succession 
so that C4 is para to C1. The standard deviations are derived from 
estimated standard deviations in the group parameters and are meant 
to be used in error analyses on inter-ring distances. Intra-ring dis­
tances, of course, are fixed (C-C = 1.392 A.). 

there is a clear indication that the carbon atoms nearest 
to phosphorus are vibrating less than those farther 

0.039(1) 
0.036(1) 
0.036(2) 
0.104(1) 
0.101(1) 
0.030(2) 

0.111(1) 
0.098(1) 
0.085(1) 
0.085(1) 
0.098(1) 
0.111(1) 

0.160(2) 
0.111(1) 
0.132(2) 
0.202(2) 
0.251(1) 
0.230(2) 

0.361(2) 
0.435(2) 
0.449(1) 
0.390(2) 
0.316(2) 
0.302(1) 

0.431(2) 
0.444(2) 
0.509(2) 
0.561(1) 
0.548(2) 
0.483(2) 

0.333(2) 
0.352(1) 
0.349(2) 
0.326(2) 
0.307(1) 
0.310(2) 

0.317(3) 
0.325(3) 
0.321(3) 
0.309(4) 
0.302(3) 
0.306(3) 

0.257(3) 
0.118(3) 
0.063(2) 
0.148(3) 
0.288(3) 
0.342(2) 

0.499(2) 
0.601(4) 
0.737(3) 
0.772(2) 
0.670(4) 
0.534(3) 

0.217(3) 
0.271(3) 
0.334(3) 
0.342(3) 
0.288(3) 
0.225(3) 

0.138(4) 
0.257(3) 
0.271(3) 
0.166(4) 
0.046(3) 
0.033(3) 

-0 .052(2) 
-0 .102(3) 
-0 .241(4) 
-0 .331(2) 
-0 .282(3) 
-0 .142(3) 

0.203(4) 
0.066(3) 
0.058(2) 
0.188(4) 
0.324(3) 
0.332(2) 

0.394(2) 
0.410(3) 
0.545(3) 
0.663(2) 
0.646(3) 
0.512(3) 

0.238(3) 
0.243(3) 
0.256(3) 
0.263(3) 
0.258(3) 
0.245(3) 

-0.363(3) 
-0 .448(3) 
-0.579(3) 
-0.625(3) 
-0 .540(3) 
-0 .409(3) 

-0 .178(3) 
-0 .107(3) 
-0 .075(3) 
-0 .114(3) 
-0 .185(3) 
-0 .216(3) 

-0 .250(4) 
-0 .396(3) 
-0 .427(2) 
-0 .313(4) 
-0 .167(3) 
-0 .136(2) 

away. The differences in thermal parameters were 
not derived. Even in this difference Fourier there was 
no indication that the treatment of the disorder was 
improper. Although a more elaborate treatment 
might be desirable, it does not seem possible, since the 
Ir-Cl and I r -C distances and the thermal parameters 
of Cl, C, and O would have to be known in advance, 
and could not be refined, if one were to use a model 
consisting of '/2 Cl and 7s CO at each position. Un­
doubtedly the high thermal parameters for " a t o m s " 
Xx and X2 (where X designates a Cl -CO composite 
position) are a reflection of the fact that the peak is 
broadened both by the composite C-O peak and also 
because the C-O peak center and the Cl peak center 
do not necessarily coincide. Both for this reason and 
because of the excellent agreement achieved with the 
present model, the parameters of Table I are taken as 
final parameters for this structure. In Table III the 
values of F 0 and FQ (in electrons) are given for the 
1128 observed reflections. The Fc values for unob­
served reflections are omitted from Table III, since 
none of the intensities calculated for unobserved but 
accessible reflections exceeds our estimate of a minimum 
observable intensity value. 

The anisotropic thermal parameters of Ir lead to 
principal root-mean-square amplitudes of vibration of 
0.125 ± 0.004, 0.192 ± 0.002, and 0.220 ± 0.003 A. 

Description of the Structure 

The crystal structure described by the space group, 
the parameters of Table I, and the cell parameters 
consists of the packing of individual^ monomeric 
molecules (shortest I r - I r distance > 9 A.). A per­
spective drawing of a monomer molecule is shown in 
Figure 1; the molecular structure is essentially that 
deduced by Vaska10 from spectroscopic and magnetic 
data. The Ir, Oi, O2, Xi, and X2 atoms are coplanar: 
the best least-squares plane18 through these five atoms 
has the equation 8.331* - 3.931>> - 5.312z = 1.089 
(triclinic coordinates). The distances of these atoms 
from this plane are given in Table IV. Figure 2 shows 
part of the difference electron density in this plane. 

(18) W. C. Hamilton, Acta. Cryst., 14, 185 (1961). 
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Table III. Observed and Calculated Structure Amplitudes (in Electrons) for IrOzCKCOXPCCeHsH 

H L aes C«L 
t t x x K . g i x . i 

9 0 115 125 

13 0 
3 -I 
* -1 
5 -1 
6 -1 
7 -1 
B -I 

H L HRS CiL 
12 0 71 95 
1* 0 45 5* 
-4 (1 50 46 
-5 0 106 103 
-7 0 127 131 
-B 0 65 73 
-9 0 78 90 

H L M S C»L 

Il -1 96 S7 

10 -1 76 96 

-10 
-12 

52 
«1 

60 

12 -1 
-5 -1 
-6 -I 
-8 -1 
-9 -1 

-10 -1 
-Il -1 

»7 4a 
133 137 
51 5* 

119 122 
68 76 
112 114 

-12 -1 (16 90 

Il 
13 

113 107 
71 71 
53 54 
54 72 
50 46 
2R5 281 
51 50 

-4 -1 55 50 
-10 -1 78 76 

-13 -1 90 93 

6 
7 
8 
0 
2 
4 
3 
4 
5 
6 
7 
9 
0 
1 
3 
4 
5 
A 

r 
ft 

112 
65 
40 
96 
Bh 
70 
?35 
25 
156 
55 
«7 
76 
56 

mo 
75 
37 
121 
67 
98 
12R 

107 
6« 
54 
95 
57 
60 

250 
33 

15« 
55 
92 
83 
53 

175 
72 
32 
110 
58 
92 
123 

3 
4 
5 
6 
7 
ft 
9 
10 
-5 
-7 
-8 

-10 
-Il 
-12 
-13 
-IA 

0 
2 
3 
4 

-2 
-2 
-2 
-2 
-2 
-2 
-? 
-2 
-2 
-2 
-2 
-2 
-2 
-? 
-2 
-? 
-1 
-3 
-3 
-3 

63 
48 
«5 
81 
68 
9? 
38 
75 
103 
70 
57 
94 
7? 
76 
90 
77 
44 
60 
63 
44 

64 
49 
84 
74 
72 
97 
32 
76 

ion 
73 
54 
94 
79 
75 
87 
73 
42 
64 
62 
49 

142 137 
68 68 

6 -2 
7 -2 
9 -7 
9 -Z 
IL -2 
-4 -2 
-5 -2 
-6 -2 
-7 -2 
-ft -? 
11 -7 
13 - 2 

99 
47 
50 
53 
48 
110 
7« 

118 
72 
46 
70 
91 

9fl 
56 
53 
59 
54 
104 
74 
115 
69 
61 
66 
89 

-1 
-3 
-4 
-5 
-7 
-1 

-12 

2 
? 
2 
2 
2 
2 
2 
3 
3 
3 
T 
3 

204 
189 
62 

[6ft 

99 
54 
44 
104 
54 
49 
52 
07 

197 
190 
61 

I5fl 

95 
50 
44 
106 
54 
47 
49 
83 

ft 
10 
-I 
-2 
-3 
-4 
-5 
-6 
-7 
-9 

- U 
-12 

-3 
-3 
-3 
- 3 
-3 
-3 
-1 
-3 
-3 
-3 
-3 
-3 

77 
52 
114 
63 
no 
46 
144 
6? 
161 
68 
74 
51 

79 
45 
115 
58 
131 
48 
134 
61 
1*3 
71 
73 
68 

0 -3 75 79 

2 
3 
4 
5 
6 
7 
8 
L 
I 
2 
3 

-3 
-3 
-3 
-3 
-3 
-3 
- 3 

-3 
-3 
-3 
-3 

1 18 

34 
76 
70 
A3 
59 
44 
62 
115 
64 
55 

124 
35 
fl9 
67 
65 
62 
44 
51 

10ft 

62 
57 

8 
9 
10 
12 
14 
16 
-1 
-2 
-3 
-4 
-5 

123 
64 
76 
83 
55 
84 
154 

2* 
166 
38 
04 

113 
60 
77 
81 
66 
76 
152 
27 

15ft 
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Figure 1. A perspective drawing of the IrO2Cl(CO)(P(C6Hc)3)J 
molecule. Xi and X2 are the disordered Cl-CO positions; phenyl 
hydrogen atoms are not shown. 

This difference Fourier is based on F0 values that do not 
include contributions from Oi, O2, Xi, or X2 and dis­
plays the electron density at these positions. Figure 2 
illustrates rather well the near equivalence of the Xi 
and X2 peaks and the fact that while the O X - O 2 peaks 
are readily resolved, there is no indication of CO 
resolution. This total disorder of the Cl and CO 
positions may be rationalized in the following way. 
Presumably the compound results from the attack above 
or below the square-planar IrCl(CO)(P(C6H6)3)2 mole­
cule by O2 in benzene solution, for the method of 
preparation10 is essentially the reaction of O2 with a 
benzene solution of IrCl(CO)(P(C6H6)S)2. Since the 
triphenylphosphine ligands are equivalent in solution,10 

only one isomer is formed, and if the relative positions 
of Cl and CO do not affect the crystallization process, 
then total disorder would be expected. This is not 
unreasonable, for the packing is determined almost 
entirely by the triphenylphosphine groups: the volume 
per triphenylphosphine in this structure is only 15% 
greater than in triphenylphosphine19 itself. 

Table IV. Distances of Atoms from Best Least-Squares Plane 

Atom 

Ir 
Xi 
X2 

Oi 
O2 

Distance, A. 

0.0008(19) 
-0.007(15) 

0.008(18) 
-0.039(21) 

0.063(28) 

Principal intramolecular distances and angles are 
given in Table V. (All intermolecular contacts appear 
to be normal and are therefore not listed.) The intra­
molecular distances seem normal. The average Ir-P 
distance of 2.37 A. may be compared with the basal 
Ru-P distances of 2.39 A. in RuCl2(P(C6H6)3)3

20 and with 
Rh-P distances of 2.32 A. in RhH(CO)(P(C6H6)S)3.

16 

There is no comparable Ir-O2 geometry described in the 
literature. However, the Cr-O distances in K3CrO8 

average 1.89 A.,21 and since the Cr-O2 bonding seems 
to be similar to the Ir-O2 bonding found here and since 

(19) J. J. Daly, /. Chem. Soc, 3799 (1964). 
(20) S. J. La Placa and J. A. Ibers, Inorg. Chem., 4, 778 (1965). 
(21) J. D. Swalen and J. A. Ibers, /. Chem. Phys., 37, 17 (1962). 

Figure 2. Electron density at the Xi, X2, Oi, and O2 positions in 
the best least-squares plane containing these positions and the Ir. 
The Ir position is marked with a cross. The contour interval is 
0.26 electron/A.3 and contours from 1.31 to 5.24 electrons/A.3 are 
shown. 

the Cr radius is about 0.1 A. less than the Ir radius, 
the average Ir-O distance of 2.07 A. does not seem 
unreasonable. The triphenylphosphine geometry is 
similar to that found recently in other compounds,16,20 

with the C-P-C angles being somewhat larger. 

Table V. Selected Intramolecular Distances and Angles 

Intramolecular 
distance, A. ^- Angle, deg.— 

Ir-Pi 
Ir-P2 

Ir-X, 
Ir-X2 

Ir-O, 
Ir-O2 

Pi-P2 

Pi-Xi 
P1-X2 

P1-Oi 
Pi-O2 

P2-Xi 
P2—X2 
P2-Oi 
P2-O2 

Xi-X2 

X1-O, 
X1-O2 

X2-O, 
X2-O2 

o,-o2 
P-C, 

2.38(1) 
2.36(1) 
2.42(2) 
2.38(2) 
2.09(3) 
2.04(3) 
4.73(2) 
3.48(2) 
3.39(2) 
3.04(2) 
3.11(3) 
3.32(2) 
3.52(2) 
3.17(3) 
2.96(3) 
3.68(2) 
4.39(3) 
3.79(4) 
3.61(3) 
4.21(4) 
1.30(3) 
1.81(1) 

Pi-Ir-P2 

P1-Ir-X, 
Pi-Ir-X2 

P1-Ir-O, 
P1-Ir-O2 

P2-Ir-X1 

P2-Ir-X2 

P2-Ir-O1 

P2-Ir-O2 

Xi-Ir-X2 

Xi-Ir-O, 
Xi-Ir-O2 

X2-Ir-Oi 
X2-Ir-O2 

Oi-I r -0 2 

Q - P - C i ' 
(av. of six) 

172.8(5) 
93.0(5) 
90.9(5) 
85.4(7) 
89.2(9) 
87.7(5) 
96.0(6) 
90.6(7) 
84.1(9) 

100.1(6) 
152.4(8) 
115.9(1.0) 
107.4(9) 
144.0(1.1) 
36.7(9) 

105(1) 

The significant facts with regard to oxygen attach­
ment are that the two oxygen atoms are equidistant 
from the Ir (difference in Ir-O bond lengths is 0.051 
± 0.045 A.) and the O-O distance of 1.30 ± 0.03 A., 

0 

while longer than that in molecular oxygen (1.21 A.), 
is significantly less than that in a typical peroxide 
(1.49 A.).22 This equivalence of the oxygen atoms is 
consistent with Griffith's5 model of the x-bonding of 
molecular oxygen to iron in hemoglobin (also a 1:1 
oxygen carrier). The facts that oxygen uptake is reversi­
ble and that the 0 - 0 bond length is significantly shorter 

(22) As a result of thermal motion, this bond distance of 1.30 A. 
is shorter than the equilibrium distance; however, we estimate that it 
is within 0.04 A. of the equilibrium distance. 
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than that in a typical peroxide are consistent with the 
views of Martell and Calvin23 that reversibility probably 
depends upon some electron transfer from metal to oxy­
gen, but not sufficient transfer to bring about irreversible 
oxidation of the metal. In the present case this trans­
fer amounts to approximately one electron, since the O-O 
distance corresponds closely to O2

- (1.28 A.); thus the 
formal oxidation state is Ir(II) and yet the compound is 
diamagnetic. Of course, in compounds of this type the 
concept of a formal oxidation state is not particularly 
useful. A less qualitative and possibly more useful 
description of the bonding might result from a molec­
ular orbital calculation, although this would be more 
meaningful if the structures of a series of analogous 
compounds were known. Even the question of 
whether Ir is five- or six-coordinated in this structure 
has been tacitly ignored. (The Ir could be thought of as 
five-coordinated if the O2 molecule were counted as a 
single ligand, as is, for example, the ethylene molecule in 
Zeiss's salt.) An analogous compound with SO2 

in place of O2 has been prepared by Vaska24 and its 
structure is now under investigation.26 The differences 
between the stereochemistry of the SO2 and O2 com-

(23) A. E. Martell and M. Calvin, "Chemistry of the Metal Chelate 
Compounds," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1952, p. 352. 

(24) L. Vaska, unpublished results. 
(25) NOTE ADDED IN PROOF. The SO2 complex is five-coordinated, 

with an Ir-S bond. However, the coordination geometry is tetragonal 

pounds should provide additional insight into the 
bonding in each. 

It is particularly interesting that the combination 
Fe3 +-O2

- has been proposed very recently by Weiss6'7 

as the structure of oxyhemoglobin and that a prelim­
inary molecular orbital calculation8 appears to support 
such a structure. It may be that the analogy between 
the oxyhemoglobin system and the synthetic iridium 
system studied here is a very good one. Nevertheless, 
it is obviously dangerous to extrapolate from this one 
structure determination and conclude that in both 
natural and synthetic molecular oxygen carriers ir-
bonding of the oxygen to the metal is the rule and that 
the O-O distance approaching that of O2

- is necessary 
for reversibility of oxygen uptake. Clearly additional 
experiments are needed to discover new, synthetic 
oxygen carriers of sufficient stability so that additional 
molecular structures of their oxygen adducts can be 
determined. 
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pyramidal with S at the apex, rather than the trigonal bipyramidal 
geometry which may be assigned to the O2 complex. 
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